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The "nite element method (FEM) is combined with the Golla}Hughes}McTavish (GHM)
model of viscoelastic materials (VEM) to model a cantilever beam with active constrained
layer damping treatments. This approach avoids time-consuming iteration in solving modal
frequencies, modal damping ratios and responses. But the resultant "nite element (FE)
model has too many degrees of freedom (d.o.f.s) from the point of view of control, nor is it
observable and controllable. A new model reduction procedure is proposed. An iterative
dynamic condensation is performed in the physical space, and Guyan condensation is taken
as an initial iteration approximation. A reduced order model (ROM) of suitable size
emerges, but it is still not observable and controllable. Accordingly, a robust model
reduction method is then employed in the state space. A numerical example proves that this
procedure reduces the model and assures the stability, controllability and observability of
the "nal reduced order model (FROM). Finally, a controller is designed by linear-quadratic
Gaussian (LQG) method based on the FROM. The vibration attenuation is evident.
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1. INTRODUCTION

Conventional passive constrained layer damping (PCLD) treatments [1}3] have been
applied to machines and structures widely over the last century because of their reliability
and simplicity, but they are not intelligent. Once the damping treatments are installed, they
cannot be adjusted and cannot adapt to changeable environments. Recently, active
damping has received increased attention in the aeronautic and astronautic industries,
owing to the signi"cant and adjustable damping traditional PCLD treatments cannot
provide. Yet, in spite of productive research into active damping treatments [4}6],
limitations remain. Safety and reliability cannot be guaranteed, and active damping is
di$cult to implement at high frequency ranges. To obtain hybrid damping, active
constrained layer damping (ACLD) treatments [7, 8] have been proposed for replacing the
constraining layer of PCLD treatments by a piezoelectric (PZT) layer.

Dynamic analysis and vibration control design require a reasonable mathematical model.
FEM combined with GHM [9, 10] model of VEM is the popular method for modelling
ACLD treatments. This combination is used in this paper to model a cantilever beam with
ACLD treatments. It avoids time-consuming iteration for solving modal frequencies, modal
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damping ratios and responses. But in terms of control, the FE model has too many degrees
of freedom (d.o.f.s). A new model reduction procedure is proposed. An iterative dynamic
condensation is performed in the physical space, and Guyan condensation is taken as an
initial iteration approximation. A ROM of appropriate size emerges, but it is still not
observable and controllable. A robust model reduction method in the state space follows.
A numerical example proves that this procedure reduces the system and guarantees the
FROM stability, controllability and observability. Finally, a controller based on the
FROM is designed by LQG method. Vibration attenuation is evident.

2. FINITE ELEMENT MODEL

Figure 1 is a cantilever beam with partially covered ACLD. An FE model is developed
based on the following assumptions: (1) The rotary inertia is negligible. Shear deformations
in the PZT and the base beam are negligible. (2) The transverse displacement w is the same
for all three layers. (3) Young's modulus of the VEM is negligible compared to those of the
beam and PZT materials. (4) Linear theories of elasticity, viscoelasticity, and piezoelectricity
are used. (5) There is perfect continuity at the interface, and no slip occurs between the
layers. (6) The applied voltage is uniform along the beam. (7) Density and thickness are
uniform over the beam.

The model for the cantilever beam with partially covered ACLD is divided into ACLD
elements and plain beam elements.

2.1. ACLD ELEMENTS

Figure 2 shows an ACLD element. Nodal displacements are given by
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The transverse displacement, the axial displacement of base beam and the axial displacement
of PZT are expressed in the nodal displacements by "nite element shape functions
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Figure 1. Cantilever beam with partially covered ACLD.



Figure 2. An ACLD element.
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From the kinematic relationships between PZT layer and the base beam, it is easy to
derive the following relation [11]:
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c and u
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can be expressed in the nodal displacement as follows:
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2.1.1. Base beam layer

The potential energy of beam due to axial displacements is
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The potential energy of beam due to transverse displacements is
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The kinetic energy of beam due to axial displacements is
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The kinetic energy of beam due to transverse displacements is
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2.1.2. PZ¹ ¸ayer

For one-dimensional structures with uni-axial loading, the constitutive equations of PZT
materials can be written as
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From equation (10), the potential energy of PZT layer due to axial displacements is
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The potential energy of PZT layer due to transverse displacements is
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The kinetic energy of PZT layer due to axial displacements is
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The kinetic energy of PZT layer due to transverse displacements is
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The virtual work done by the induced strain (force) is
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2.1.3. <EM layer

For one-dimensional structures, the GHM model represents the shear modulus of VEM
as a series of mini-oscillator terms in the Laplace domain [9, 10]
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s-domain.
The potential energy of VEM layer due to the shear strain can be written as follows:
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The kinetic energy of VEM layer due to axial displacements is
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The kinetic energy of VEM layer due to transverse displacements is
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2.2. PLAIN BEAM ELEMENTS

The sti!ness and mass matrices of plain beam elements have dimensions of 6]6. They are
similar to equations (6)}(9).

2.3. LOAD VECTOR

The virtual work done by external disturbance force is
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It is usually more convenient to consider the e!ects of such force at the global level.

2.4. THE DYNAMIC EQUATION OF CANTILEVER BEAM WITH ACLD TREATMENTS

For the ACLD elements, the element equations can be written as
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where
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Equation (21) is a non-linear equation because G
v
in [K(e)

vc ] is not a constant. In Laplace
domain the initial conditions have been assumed to be zero, so a column matrix of
dissipation co-ordinates is introduced
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From the GHM model of VEM, equation (21) can be written as follows:
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It is obvious that equation (23) is in the traditional second order form. For the cantilever
beam with ACLD treatments, the following global dynamic equation can be derived
through standard FEM assembling procedures:

[M]MqK N#[D]MqR N#[K]MqN"[F]. (24)
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3. THE MODEL REDUCTION PROCESS

The dynamic equation (24) derived by FEM has an excess of d.o.f.s from a control point
of view. Moreover, it is unobservable and uncontrollable [12, 13]. Model reduction is
required.

Model reduction methods are developed from two di!erent disciplines [14]: the FEM
analysis [15, 16] and the large-system control theories [12, 17]. The former could reduce
system size, but it could not guarantee observability and controllability because the model
reduction takes place entirely in the physical space. Observability and controllability are
beyond consideration. The latter could guarantee observability and controllability, but it is
unsuitable for #exile structures like the ACLD system. The FE model of the ACLD system
has too many d.o.f.s for adequate control, especially after the introduction of dissipation
co-ordinates in equations (22) and (23). What is more, this large system is uncontrollable
and unobservable. It is impossible to compute directly the full orthogonal bases for
eigenspace required in intermediate steps in state space, even by Schur decomposition.

A new model reduction procedure is proposed. An iterative dynamic condensation is
performed in the physical space, and Guyan condensation is taken as an initial iteration
approximation. This results in a reduced order system of suitable size, but it is unobservable
and uncontrollable. A robust model reduction method is employed in the state space
afterwards. System size is reduced, and stability, controllability and observability of FROM
are assured.

To study observability and controllability of the proposed model reduction procedure
conveniently, controllability gramian=

c
and the observability gramian=
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3.1. THE MODEL REDUCTION IN THE PHYSICAL SPACE

The total d.o.f.s of equation (24) is assumed to be n. It can be divided into master
d.o.f.s (the conserved d.o.f.s) and slave d.o.f.s (the removed d.o.f.s). Equation (24) can be
written as
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De"ne system reduction matrix R3Rs]m, which relates the master d.o.f.s with the slave
d.o.f.s, then after i iterations, the reduced order system equation [18] is
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In this reduction, two issues must be addressed: selection of the master d.o.f.s, and their
number. Levy [19] gave guidance on choosing master d.o.f.s. He recommended the choice
of d.o.f.s with large displacements in the useful band or large mass components. Ramsden
and Stocker [20] selected the master d.o.f.s associated with large mass concentrations and
those reasonably #exible with respect to other mass concentrations. Downs [21] insisted
that master d.o.f.s must be translations instead of rotations. In complicated assemblies,
master d.o.f.s were to be found in the most #exible regions. Shah and Raymund [22]
proposed an eliminated algorithm, such that the ratio k

ii
/m

ii
of the diagonal terms of K and

M corresponding to the removed slave d.o.f.s is a maximum. The number of interested
modals determines the number of master d.o.f.s. Levy [19] advised that the ratio between
the number of master d.o.f.s and the number of interested modals should be 3)5. Ramsden
and Stocker [20] thought that the ratio should have a value between 2 and 3. Suarez [23]
proposed a 1)40 ratio. Those con#icting theories make it di$cult to resolve the issue
of master d.o.f.s selection and their number. Di!erent problems will require di!erent
solutions.

3.2. THE MODEL REDUCTION IN THE STATE SPACE

The reduced order system equation (29) is much smaller than the original system
equation (24), but it is unobservable and uncontrollable in the state space. A robust model
reduction follows in the state space. Generally speaking, the robust model reduction
method has the following special features: (1) It bypasses the ill-conditioned balanced
transformation. (2) It employs Schur decomposition to compute robustly the orthogonal
bases for eigenspace required in intermediate steps. (3) It has an H=-norm error bound. The
in"nity norm of the relative error or the absolute error of the reduced order model is
bounded by a precomputable positive real number for all frequencies.

Equation (29) can be transformed into the state-space form (A, B, C, D), with 2m d.o.f.s. Its
transfer function is G(s)"D#C (Is!A)~1. It can be reduced to a system with k (k(2m)
d.o.f.s. The detailed procedure [12] is as follows:

(1) Solve matrices P and Q from the following Lyapunov equations:

PAT#AP#BBT"0, QA#ATQ#CTC"0.
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(2) Compute an orthogonal real matrix <
A

and <
D

to put PQ into the Schur form
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4. DESIGN CONTROLLER BY LQG

For the "nal reduced order model (AK , BK ,CK ,DK ), the LQG controller [13] is
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where P denotes the semi-positive-de"nite weighting matrices on the states, Q the
positive-de"nite weighting matrices on the control inputs, P

0
and Q

0
are the input noise

intensity and measurement noise intensity, vector F denotes the disturbance position, y is
the measurable output of the system (AK , BK ,CK ,DK ).

5. NUMERICAL EXAMPLE

The methods outlined here are tested on the cantilever beam in Figure 1, whose
dimensions are given in Table 1. The beam consists of an aluminum base beam with a layer



TABLE 1

System parameters

¸ 0)2616m h
b

0)002286m E
b

7)1]1010N/m2 uL 10 000 rad/s
¸¸ 0)027m h

v
0)00025m E

c
7)4]1010N/m2 mD 4)0

¸R 0)133m o
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b 0)0127m o
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1250kg/m3 G= 5]105Pa

h
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0)000762m o
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2700kg/m3 a 6)0

TABLE 2

Results of FEM analysis

Mode 1 Mode 2 Mode 3 Mode 4

ACLD element Frequencies (Hz) Frequencies (Hz) Frequencies (Hz) Frequencies (Hz)
numbers (damping ratios) (damping ratios) (damping ratios) (damping ratios)

2 ACLD elements 27)90 150)12 442)97 831)76
(2)56%) (2)86%) (3)15%) (0)94%)

3 ACLD elements 27)90 150)08 441)77 826)21
(2)53%) (2)82%) (3)02%) (1)03%)

4 ACLD elements 27)90 150)06 441)44 825)13
(2)52%) (2)79%) (2)96%) (1)03%)

5 ACLD elements 27)87 150)33 442)02 828)73
(2)56%) (2)75%) (2)82%) (0)94%)
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of 3M ISD 112 VEM, followed by a PZT constraining layer. The beam is disturbed at the
free tip of the cantilever beam; the transverse displacement response is measured there as
well.

5.1. FEM ANALYSIS

In Figure 1, the left part of plain beam is divided into two plain beam elements; the right
into three; and the middle into 2, 3, 4, 5 ACLD elements. Modal frequencies (Hz) and
damping ratios of the "rst four modes are given in Table 2.

5.2. MODEL REDUCTION

In the last condition of Table 2, the system derived by FEM has 51 d.o.f.s in the physical
space and 102 d.o.f.s in the state space. The system is unobservable and uncontrollable. It is
necessary to perform model reduction and make the system observable and controllable
before a controller is designed. Guided by section 3 and ACLD requirements, the transverse
displacements of the 10 nodes and the axial displacements of the PZT layer of the six nodes
in the ACLD elements are selected as master d.o.f.s. All dissipation co-ordinates, the system
rotations and base beam axial displacements become slave d.o.f.s. Table 3 shows
eigenvalues, modal frequencies and relative error of the "rst "ve modes for the full order
model (FOM) and ROM in the physical space. Figure 3 is the ROM frequency response,
derived by the methods described in section 3.1, compared with that of FOM. According to



TABLE 3

Eigenvalues, natural frequencies and damping ratios of the ,rst ,ve modes for the FOM and
the ROM obtained by the methods described in section 3.1

Eigenvalue of Eigenvalue of Modal frequency Modal frequency Relative error
FOM real part ROM real part of FOM of ROM of modal

Mode (imaginary part) (imaginary part) (Hz) (Hz) frequency (%)

1 !2)2424 !2)2425
($175)1236) ($175)1238) 27)87 27)87 0)000

2 !13)0059 !13)1036
($944)4660) ($944)6434) 150)33 150)36 0)01996

3 !39)2062 !39)60382
($2776)9938) ($2781)7158) 442)02 442)77 0)1696

4 !24)3684 !26)5048
($5207)0372) ($5233)4513) 828)73 832)94 0)5080

5 !22)1051 !23)6863
($8932)0711) ($9047)1374) 1421)59 1439)90 1)2880

Figure 3. Comparison of the FRF for the FOM and the ROM obtained by the methods described in section 3.1:
**, full order model; } } }, reduced order model.
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section 3, the condition of=
c
and=

o
is a good measure of controllability and observability.

Table 4 is the condition of =
c
and =

o
of FOM and ROM.

From Table 3 and Figure 3, the following conclusions can be drawn: (1) The ROM
obtained by the methods described in section 3.1 represents the FOM well in the low
frequency range. (2) ROM approaches FOM from the upper bound. (3) Relative error
increases when frequency increases. Table 4 shows that ROM and FOM are uncontrollable
and unobservable according to section 3.

However, the design of a suitable controller depends on controllability and observability
of the system. Robust model reduction (section 3.2) reduces the model from 32]32 to 6]6
in the state space. Table 5 gives eigenvalues, modal frequencies and relative error of the "rst
three modes for the FOM and FROM in the state space. Figure 4 shows FROM frequency
response derived by the methods described in section 3.2, compared with that of FOM.
Figure 5 is the transverse displacement response at the free tip under the impulse
disturbance. Table 6 is the condition of =

c
and =

o
of FOM and FROM.

Similarly, from Table 5, and Figures 4 and 5, the following conclusions can be drawn: (1)
The FROM obtained by the methods described in section 3.2 represent the FOM well in the



TABLE 4

¹he condition of=
c
and=

o
of the FOM and the ROM obtained by the methods described in

section 3.1

Size (=
c
) Rank (=

c
) Rank (=

o
) Rank (=

o
)

FOM 102 20 102 8
ROM 32 18 32 16

TABLE 5

¹he eigenvalues, natural frequencies and damping ratios of the ,rst 3 modes for the FOM and
the FROM obtained by the methods described in section 3.2

Eigenvalue of Eigenvalue of Modal frequency Modal frequency Relative error
FOM real part FROM real part of FOM of FROM of modal

Mode imaginary part imaginary part (Hz) (Hz) frequency (%)

1 !2)2424 !2)2022
($175)1236) ($175)2783) 27)87 27)90 0)1076

2 !13)0059 !13)1178
($944)4660) ($948)8563) 150)33 151)03 0)4656

3 !39)2062 !41)9985
($2776)9938) ($2798)5747) 442)02 445)46 0)7782

Figure 4. Comparison of the FRF for FOM and the FROM obtained by the method described in section 3.2:
**, full order model; } } }, "nal reduced order model.
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low frequency range. (2) FROM approaches FOM from the upper bound. (3) Relative error
increases as frequency increases. Table 6 shows that FROM is far smaller than FOM.
Furthermore, FROM is controllable and observable, according to section 3.

5.3. DESIGN CONTROLLER BY LQG

The controllable and observable FROM obtained in section 5.2 accurately represents the
FOM of the ACLD system. A FROM-based controller is designed accordingly as



Figure 5. The transverse displacement response at the free tip under the impulse disturbance of the FOM and
FROM: **, full order model; }} }, "nal reduced order model.

TABLE 6

¹he condition of=
c
and=

o
of the FOM and the FROM obtained by the methods described in

section 3.2

Size (=
c
) Rank (=

c
) Rank (=

o
) Rank (=

o
)

FOM 102 20 102 8
FROM 6 6 6 6

Figure 6. Comparison of the FRF for uncontrolled and controlled systems based on the "nal 6]6 model:**,
uncontrolled; }} }, controlled.
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Figure 7. The transverse displacement response measured at the free tip of the cantilever beam with ACLD
treatments under the impulse disturbance: **, uncontrolled; 00, controlled.

798 Y. M. SHI E¹ A¸.
mentioned in section 4. Weighting matrices Q and R are 5]105]I and 1]10~4

respectively, I is the unit matrix with suitable size. Input noise intensity Q
0

and
measurement noise intensity R

0
are 1]10~2 and 1]10~10 respectively. The cantilever

beam's free tip is distributed. Output is the transverse displacement response measured
there as well. The control force is the product of the voltage on the PZT. Figure 6 compares
the FRF for uncontrolled and controlled systems. Figure 7 is the transverse displacement
response measured at the free tip under the impulse disturbance. In Figures 6 and
7 vibration control is obvious.

6. CONCLUSION

A dynamic equation is derived by combining the FEM with the GHM model of VEM.
A new procedure is proposed for reducing the model and making the FROM observable
and controllable. A LQG controller is designed based on the "nal observable and
controllable reduced order model. A numerical example proves that the model reduction
procedure is e!ective and the vibration control is obvious.
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APPENDIX A: NOMENCLATURE

b width of ACLD beam
D electrical displacement
d
31

piezoelectric constant
[D] damping matrix
E
c,b

Young's modulus of PZT layer and base beam respectively
E electrical "eld
[F] general force including the e!ect of external disturbances and PZT layer
M f (e)

c
N general force of the PZT layer

M f (e)
d

N general force of external disturbances
G= equilibrium value of shear modulus
G

v
shear modulus of VEM in time domain

h
c,v,b

thickness of PZT layer, VEM layer and base beam respectively
I
c,b

moment of inertia of PZT layer and base beam respectively
[K] sti!ness matrix
¸
e

length of ACLD elements
¸ length of the ACLD part
¸¸ length of the left part of ACLD beam
¸R length of the right part of the ACLD beam
[M] mass matrix
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N
w,c,b,v,c shape function of the transverse displacement, the axial displacement of PZT layer, the

axial displacement of base beam, the axial displacement of VEM layer, the shear strain of
VEM layer respectively

SE
11

elastic compliance constant
sGI (s) complex modulus of VEM layer
M;(e)N local nodal displacement vector
u
c,b

axial displacement of PZT layer and base beam respectively
<(t) applied voltage on PZT layer
w transverse displacement
ZK

k
(s) dissipation co-ordination

a
k
,uL

k
, fL

k
positive constants of GHM model

c shear strain of VEM layer
e mechanical strain in the axial direction
er
33

dielectric constant
h rotational angle
o
c,v,b

density of PZT layer, VEM layer and base beam respectively
p
i

Hankel singular-values of the system
q mechanical stress in the axial direction

Superscript
@ partial di!erentiation with respect to x

Subscripts
b base beam
c PZT constraining layer
i, j elemental node i, j
m master d.o.f.s
s slave d.o.f.s
R reduced order system
u axial displacement
v viscoelastic layer
w transverse displacement
c shear strain of VEM layer
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